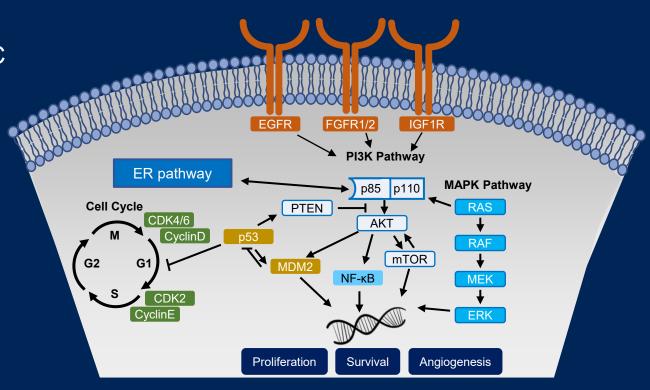


Alpelisib + fulvestrant in patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC): Biomarker analyses by next-generation sequencing from the SOLAR-1 study

Dejan Juric,¹ Hope S. Rugo,² Albert Reising,³ Chong Ma,⁴ Eva M. Ciruelos,⁵ Sibylle Loibl,⁶ Christian F. Singer,⁷ Joohyuk Sohn,⁸ Mario Campone,⁹ Pierfranco Conte,¹⁰ Hiroji Iwata,¹¹ Farhat Ghaznawi,³ Michelle Miller,³ Tetiana Taran,¹² Faye Su,³ Fabrice André¹³

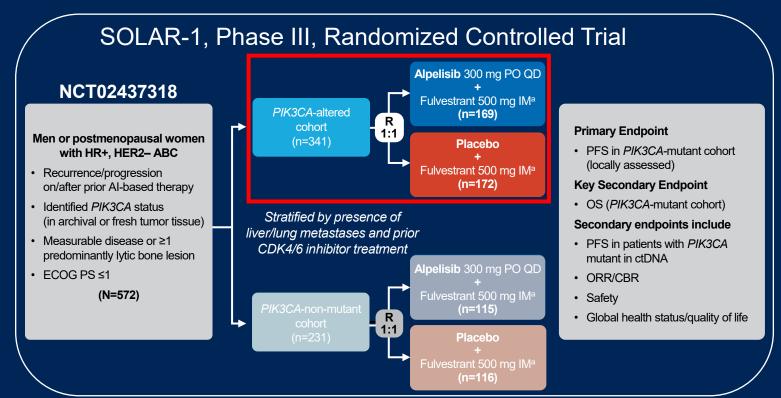
¹Department of Oncology/Hematology, Massachusetts General Hospital, Boston, MA, United States; ²Department of Medicine (Hematology/Oncology), University of California San Francisco, San Francisco, CA, United States; ³Oncology Global Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States; ⁴Early Development Analytics, Novartis Pharmaceuticals Corporation, Cambridge, MA, United States; ⁵Medical Oncology Department, Breast Cancer Unit, University Hospital 12 de Octubre, Madrid, Spain; ⁶Department of Medicine and Research, German Breast Group, Neu-Isenburg, Germany; ⁷Department of Clinical-Translational Gynecological Oncology, Medical University of Vienna, Vienna, Austria; ⁸Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea; ⁹Department of Oncology, Institut de Cancérologie de l'Ouest, Saint-Herblain, France; ¹⁰Department of Science, Surgery, Oncology, and Gastroenterology, Istituto Oncologico Veneto, University of Padua, Padua, Italy; ¹¹Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan; ¹²Oncology Global Drug Development, Novartis Pharma AG, Basel, Switzerland; ¹³Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France



The PI3K Pathway Is Part of a Complex Signaling Network That Is Altered in Breast Cancer

- Approximately 40% of HR+, HER2– ABC patients have mutations in *PIK3CA*, one of the most frequently mutated genes in breast cancer, which encodes the α subunit of PI3K (p110α)¹⁻⁵
 - PIK3CA mutations can contribute to endocrine therapy resistance and are linked to worse overall survival in metastatic breast cancer⁶⁻⁸

ABC, advanced breast cancer; AKT, protein kinase B; EGFR, epidermal growth factor receptor; CDK 2/4/6, cyclin-dependent kinase 2/4/6; ER, estrogen receptor; ERK, mitogen-activated protein kinase 1 (MAPK1); ET, endocrine therapy; FGFR1/2, fibroblast growth factor receptor 1/2; G1, gap 1; G2, gap 2; HER2–, human epidermal growth factor receptor 2-negative; HR+, hormone receptor positive; IGF1R, insulin like growth factor 1 receptor; FUL, fulvestrant; M, mitosis; MAPK, mitogen-activated protein kinase; MDM2, MDM2 proto-oncogene; MEK, mitogen-activated protein kinase kinase 7 (MAP2K7); mTOR, mammalian target of rapamycin; NF-kB, nuclear factor kappa B; PI3K, phosphatidylinositol-3-kinase; p53, tumor protein p53; *PIK3CA*, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RAF, raf1 proto-oncogene, serine/threonine kinase; RAS, rat sarcoma virus; S, synthesis.


1. Cancer Genome Atlas Network. *Nature*. 2012;490(7418):61-70; 2. Di Leo A, et al. *Lancet Oncol*. 2018;19(1):87-100; 3. Mollon L, et al. AACR 2018 (poster 1207); 4. Moynahan ME, et al. *Br J Cancer*. 2017;116(6):726-730; 5. Tolaney S, et al. AACR 2019 (abstract 4458); 6. Mosele F, et al. *Ann Oncol*. 2020;31(3):377-386; 7. Fu X, et al. *Breast Cancer Res*. 2014;16(5):430; 8. Sobhani M, et al. *J Cell Biochem*. 2018;119(6):4287-4292.

Alpelisib, a *PIK3CA* Inhibitor, Is Effective for Treating Patients With HR+, HER2–, *PIK3CA*-Altered ABC

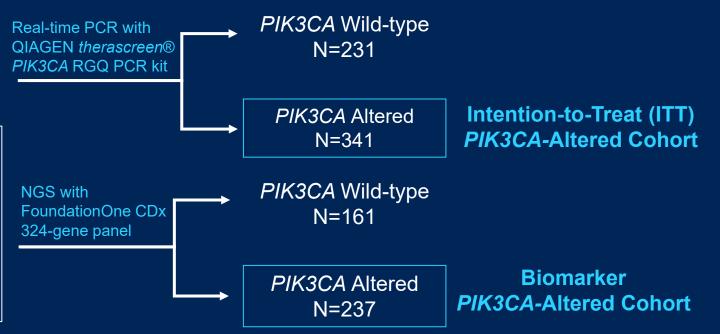
- Alpelisib is an oral and selective inhibitor and degrader of altered PI3Kα^{1,2}
 - In SOLAR-1, mPFS for patients treated with alpelisib + FUL was 11.0 months compared with 5.7 months in patients treated with placebo + FUL (HR 0.65; 95% CI, 0.50-0.85; 1-sided *P*<0.001)³

Alpelisib plus fulvestrant (FUL) is approved for use in men or postmenopausal women with PIK3CA-mutated, HR+, HER2— locally advanced or metastatic breast cancer after disease progression following ET monotherapy (Europe) or an ET-based regimen (USA)^{4,5}

^aFulvestrant given on Day 1 and Day 15 of the first 28-day cycle, then Day 1 of subsequent 28-day cycles.

ABC, advanced breast cancer; AI, aromatase inhibitor; CBR, clinical benefit rate; CDK4/6, cyclin-dependent kinase 4/6; ctDNA, circulating tumor DNA; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; FUL, fulvestrant; HER2–, human epidermal growth factor receptor 2-negative; HR+, hormone receptor-positive; IM, intramuscular; ORR, overall response rate; OS, overall survival; (m)PFS, (median) progression-free survival; *PIK3CA*, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PO, orally; QD, daily; R, randomization.

1.Rugo HS, et al. Ann Oncol. 2020;31(8):1001-1010; 2. Fritsch C, et al. Cancer Res. 2018;78(13 suppl): Abstract 3934 (poster); 3. André F, et al. N Engl J Med. 2019;380(20):1929-1940; 4. Piqray (alpelisib) [summary of product characteristics]. Dublin, Ireland: Novartis Europharm Limited; 2020; 5. Pigray (alpelisib) [prescribing information]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2021.


Exploratory Retrospective Biomarker Analysis With SOLAR-1 Baseline Tumor Samples

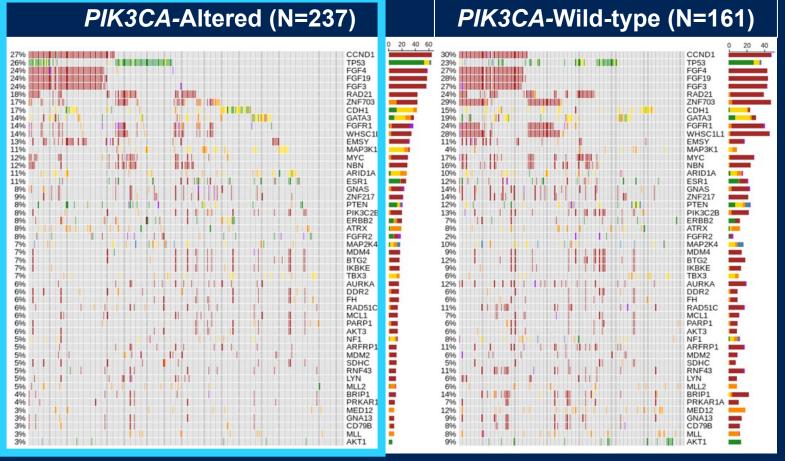
Primary¹ Baseline tissue samples from 572 SOLAR-1 randomized patients

Exploratory

Baseline FFPE tissue samples from 70% (n/N=398/572) of SOLAR-1 patients with samples available

80% (n=319) primary tumor samples and 20% (n=79) metastatic samples

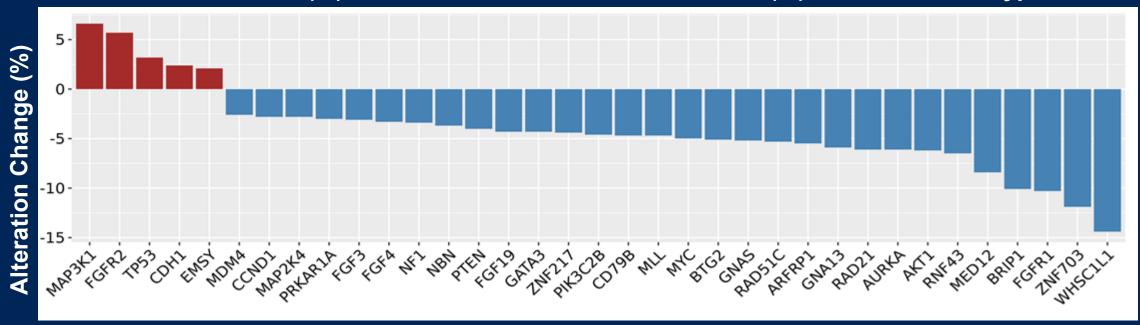
- Clinical benefit was assessed using progression-free survival (PFS) and hazard ratio (HR)
- HR (95% CI) was estimated using a multivariate Cox PH model by adjusting multiple clinical covariates including age, ECOG PS, bone lesion, lung/liver metastases, and prior CDK4/6 inhibitor treatment
- No multiple testing adjustments were made in this subgroup analysis


CDK4/6, cyclin-dependent kinase4/6; CDx, companion diagnostic; ECOG PS, Eastern Cooperative Oncology Group performance status; FFPE, formalin-fixed, paraffin-embedded; HR, hazard ratio; ITT, intention-totreat; NGS, next-generation sequencing; PCR, polymerase chain reaction; PFS, progression-free survival; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RGQ, Rotor-Gene Q. 1. André F, et al. N Engl J Med. 2019;380(20):1929-1940.

Genes Are Differentially Altered in *PIK3CA*-Altered and -Wild-type Biomarker Populations

 NGS sequencing of baseline tumor samples from patients randomized in SOLAR-1

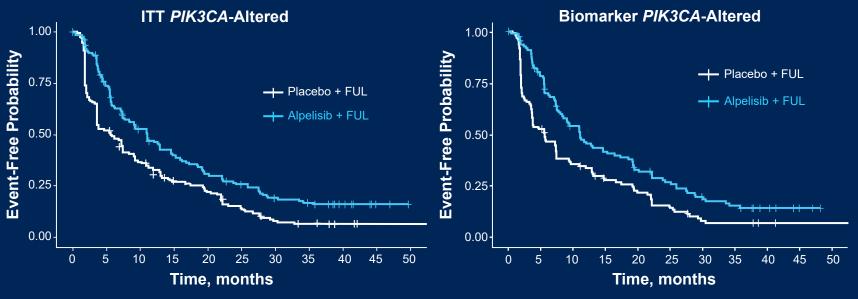
FUL, fulvestrant; NGS, next-generation sequencing; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; SV, sequence variant.



Differences in Alteration Prevalence Between *PIK3CA*-Altered and -Wild-type Biomarker Populations

Gene Alteration (%) in *PIK3CA*-Altered – Gene Alteration (%) in *PIK3CA*-Wild-type

■ Includes 35 genes with >2% gene alteration change between *PIK3CA*-altered and *PIK3CA*-wild-type


PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Efficacy of Alpelisib + FUL in Patients With Altered *PIK3CA* Is Similar in the SOLAR-1 ITT and Biomarker Populations

 Biomarker PIK3CA-altered population includes 70% of the ITT PIK3CA-population

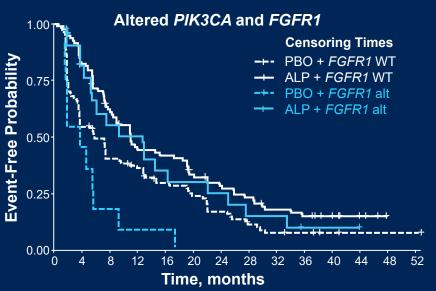
Median PFS in Patients With Altered PIK3CA								
		Placebo + FUL						
Cohort	n/N	mPFS, mo (95% CI)	n/N	mPFS, mo (95% CI)	HR (95% CI)			
ITT PIK3CA-Altered	149/172	5.7 (3.7-7.4)	124/169	11.0 (7.5-14.5)	0.59 (0.43-0.81)			
Biomarker <i>PIK3CA</i> -Altered	101/117	5.6 (3.6-7.4)	90/120	11.0 (8.3-15.2)	0.56 (0.42-0.76)			

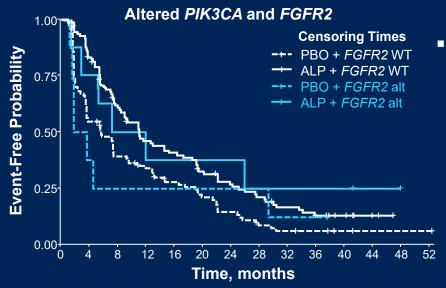
FUL, fulvestrant; HR, hazard ratio; ITT, intention-to-treat; mPFS, median progression-free survival; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.

Clinical Benefit Across TMB Quartiles of Patients Treated With Alpelisib + FUL

	Placebo + FULª		Alpelisib + FUL ^a			HR
Quartile	n/N mPFS, mo n/N mPFS, mo (95% CI)		HR by Quartile	(95% CI)		
Quartile 1 0-<2.52 mut/mb	26/30	3.2 (1.8-7.4)	24/32	18.5 (7.7-22.1)	,_ _	0.38 (0.21-0.68)
Quartile 2 2.52-<3.78 mut/mb	14/17	12.8 (3.7-22.1)	13/18	12.0 (4.5-33.5)		0.81 (0.38-1.77)
Quartile 3 3.78-<5.04 mut/mb	14/15	3.6 (1.8-7.4)	14/16	10.9 (3.8-11.2)	, <u> </u>	0.68 (0.32-1.47)
Quartile 4 ≥5.04 mut/mb	31/37	5.1 (1.9-7.4)	27/35	7.4 (5.5-17.3)	, <u> </u>	0.68 (0.40-1.17)
					0 0.5 ← 1 → 1.5 Favors alpelisib HR Favors placebo	2

• Clinical benefit was most pronounced in patients treated with alpelisib with a low TMB (Quartile 1), and there was a trend toward clinical benefit in patients with a higher TMB


^aTMB data available for 200 of 237 patients with *PIK3CA*-altered tumors. Data should be interpreted with caution because of the small sample size.
FUL, fulvestrant; HR, hazard ratio; mb, megabase; mPFS, median progression-free survival; mut, mutations; *PIK3CA*, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; TMB, tumor mutational burden.



Improved Alpelisib Benefit Observed in Patients With Altered *FGFR1* and/or *FGFR2*

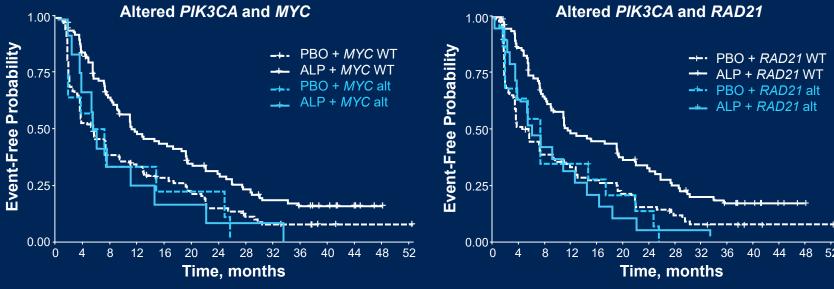
Trend toward improved clinical benefit in patients treated with alpelisib + FUL who had altered FGFR1 and/or FGFR2, despite an association of FGFR1/2 alterations with resistance to endocrine therapy and CDK4/6 inhibitors^{1,2}

Median PFS in Patients With Altered <i>PIK3CA</i> and <i>FGFR1/2</i>								
		Placebo + FUL		Alpelisib + FUL				
Gene	n/N mPFS, mo (95% CI)		n/N	mPFS, mo (95% CI)	HRª (95% CI)			
FGFR1 WT	90/106	5.8 (3.6-7.4)	72/98	11.0 (8.1-18.5)	0.54 (0.39-0.75)			
FGFR1 Altb,c	11/11	3.8 (1.6-5.6)	18/22	12.7 (5.3-22.1)	0.36 (0.16-0.77)			
FGFR2 WT	94/108	5.7 (3.6-7.4)	84/111	11.0 (8.3-16.4)	0.55 (0.41-0.75)			
FGFR2 Altb,d	7/9	2.8 (1.4-29.2)	6/9	9.6 (1.5-NA)	0.28 (0.09-0.88)			

^aHR was calculated by adjusting additional biomarker variables TMB and PTEN Loss. ^bData should be interpreted with caution due to the small sample size. ^c14% of patients had alterations in *FGFR1*. ^d8% of patients had alterations in *FGFR2*.

ALP, alpelisib; Alt, altered; CDK4/6, cyclin-dependent kinase4/6; FGFR1/2, fibroblast growth factor receptor 1/2; FUL, fulvestrant; HR, hazard ratio; mPFS, median progression-free survival; PBO, placebo; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; WT, wild-type.

1. Formisano L, et al. *Nat Commun.* 2019;10(1):1373; 2. Mao P, et al. *Clin Cancer Res.* 2020;26(22):5974-5989.



Limited Alpelisib Benefit Observed in Patients With Altered MYC and/or RAD21

Median PFS in Patients With Altered PIK3CA and MYC or RAD21								
	Placebo + FUL		Al	pelisib + FUL				
Gene	n/N	mPFS, mo (95% CI)	n/N	mPFS, mo (95% CI)	HR ^a (95% CI)			
MYC WT	89/102	5.6 (3.6-7.4)	78/107	11.6 (9.0-19.1)	0.49 (0.35-0.67)			
MYC Altb,c	12/15	6.4 (1.8-14.8)	12/13	5.8 (2.3-14.6)	1.01 (0.45-2.28)			
RAD21 WT	82/94	5.1 (3.6-7.4)	71/100	11.6 (9.0-19.3)	0.46 (0.33-0.64)			
RAD21 Altb,d	19/23	7.2 (1.9-14.8)	19/20	6.1 (3.6-12.7)	1.02 (0.54-1.95)			

- Trend toward reduced clinical benefit in patients with PIK3CA-altered tumors who were treated with alpelisib + FUL and had altered MYC and/or RAD21
 - Aligns with previous reports that amplification of MYC conferred resistance to PI3K inhibition¹ and RAD21 expression was associated with poor overall survival²

^aHR was calculated by adjusting additional biomarker variables TMB and PTEN Loss. ^bData should be interpreted with caution due to the small sample size. ^cMYC was altered in 12% of patients with altered *PIK3CA*. ^dRAD21 was altered in 18% of patients with altered *PIK3CA*.

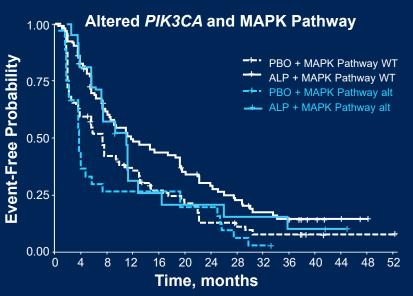
ALP, alpelisib; Alt, altered; FUL, fulvestrant; HR, hazard ratio; mPFS, median progression-free survival; PBO, placebo; *PIK3CA*, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; *MYC*, MYC proto-oncogene bHLH transcription factor; *RAD21*, RAD21 cohesin complex component; WT, wild-type.

1. Ilic N, et al. *Proc Natl Acad Sci U S A*. 2011;108(37),E699-E708; 2. Xu H, et al. *Breast Cancer Res*. 2011;13(1):R9.

Alpelisib + FUL Is Effective Regardless of Gene **Alteration Status**

Gene	Plac	ebo + FUL	Alpe	lisib + FUL	HR by Gene and Treatment	HRa
Gene	n/N	mPFS, mo	n/N	mPFS, mo	— The by Gene and Treatment	(95% CI)
<i>TP</i> 53 WT	69/81	7.3	69/94	12.0		0.56 (0.39-0.80)
TP53 Altb	32/36	3.7	21/26	8.5		0.49 (0.28-0.87)
ESR1 WT	90/105	5.5	78/107	11.0		0.51 (0.37-0.70)
ESR1 Altb	11/12	6.5	12/13	12.0	<u> </u>	0.70 (0.29-1.67)
CCND1 WT	75/84	5.7	67/89	11.2	<u> </u>	0.47 (0.33-0.66)
CCND1 Altb	26/33	3.6	23/31	9.2		0.77 (0.43-1.37)
MAP3K1 WT	90/104	5.5	81/107	10.9		0.54 (0.40-0.75)
MAP3K1 Altb	11/13	7.7	9/13	17.3	-	0.44 (0.17-1.10)
ARID1A WT	90/102	5.5	85/109	10.9		0.51 (0.37-0.70)
ARID1A Altb	11/15	12.4	5/11	22.1		0.50 (0.17-1.49)
interpreted with caution due t	to the small sample s	rker variables TMB and PTEN ize. A; <i>CCND1</i> , cyclin D1; <i>ESR1</i> ,			0 0.5 ← 1 ← 1.5 Favors alpelisib HR Favors placebo	2

#ASCO22


progression-free survival; TP53, tumor protein p53; WT, wild-type.

fulvestrant; HR, hazard ratio; MAP3K1, mitogen-activated protein kinase kinase 1; mPFS, median

PRESENTED BY:

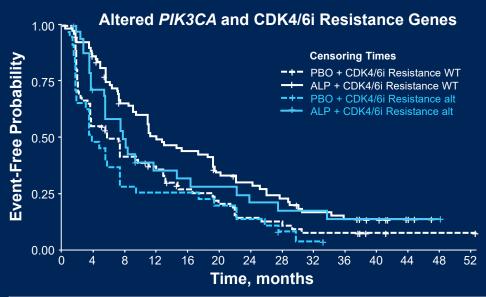
Alpelisib + FUL Is Effective When the MAPK and/or PI3K Pathway Are Altered

- Clinical benefit was observed in patients with mutations in the MAPK or PI3K (in addition to *PIK3CA*) pathway
 - MAPK pathway genes assessed included ERBB2, NF1, ERBB3, KRAS, EGFR, BRAF, MAP2K11
 - PI3K pathway genes assessed included PTEN, AKT1, AKT2, AKT3, TSC1, TSC2, PDK1, MTOR, RPTOR, RICTOR

Median PFS in Patients With Altered <i>PIK3CA</i> and MAPK or PI3K Pathway							
	F	Placebo + FUL	A	Alpelisib + FUL			
Gene	n/N	n/N mPFS, mo (95%CI)		mPFS, mo (95%CI)	HRª (95%CI)		
MAPK WT	72/87	7.2 (3.7-9.6)	72/97	11.6 (8.1-19.2)	0.56 (0.40-0.79)		
MAPK Altb	29/30	3.6 (2.1-5.7)	18/23	10.9 (5.5-12.7)	0.43 (0.23-0.80)		
PI3K WT	77/88	5.5 (3.5-7.4)	67/88	11.2 (9.0-18.5)	0.48 (0.34-0.68)		
PI3K Altb	24/29	5.8 (2.8-13.1)	23/32	7.5 (5.3-22.1)	0.68 (0.38-1.23)		

^aHR was calculated by adjusting additional biomarker variables TMB and PTEN Loss. ^bData should be interpreted with caution due to the small sample size.

AKT, protein kinase B; ALP, alpelisib; Alt, altered; BRAF, BRAF proto-oncogene; EGFR, epidermal growth factor receptor; ERBB2, erb-b2 receptor tyrosine kinase 2; ERBB3, erb-b2 receptor tyrosine kinase 3; FUL, fulvestrant; HR, hazard ratio; KRAS, KRAS proto-oncogene; MAP2K1, MAP2K1 mitogen-activated protein kinase kinase 1; MAPK, mitogen-activated protein kinase in median progression-free survival; mTOR, mammalian target of rapamycin; MYC, MYC proto-oncogene; NF1, neurofibromin 1; PBO, placebo; PDK, pyruvate dehydrogenase kinase; PISK, phosphatidylinositol-3-kinase; PIK3CA, phosphatidylinositol-4-bisphosphate 3-kinase catalytic subunit alpha; RAD21, RAD21 cohesin complex component; RICTOR, RTOR independent companion of MTOR complex 2; RPTOR, regulatory associated protein of MTOR complex 1; TSC, TSC complex subunit 1; WT, wild-type.


1. Razavi P, et al. Cancer Cell. 2018;34(3):427-438.e6.

Clinical Benefit of Alpelisib + FUL Remains in Patients With Altered CDK4/6i Resistance Genes

- Clinical benefit was observed in patients with mutations in CDK4/6i resistance genes
 - CDK4/6i resistance genes included in the analysis were PTEN, AURKA, NF1, ATM, ATR, RB1, CDK4, CDKN2A/B/C

Median PFS in Patients With Altered <i>PIK3CA</i> and CDK4/6i Resistance Genes								
		Placebo + FUL Alpelisib + FUL						
Gene	n/N	mPFS, mo (95% CI)	n/N	mPFS, mo (95% CI)	HRª (95% CI)			
CDK4/6i Resistance WT	67/81	5.7 (3.6-9.6)	64/87	12.0 (9.0-19.2)	0.53 (0.37-0.76)			
CDK4/6i Resistance Altb	33/35	3.8 (1.9-7.2)	26/33	7.7 (5.3-14.6)	0.52 (0.30-0.89)			

^aHR was calculated by adjusting additional biomarker variables TMB and PTEN Loss. ^bData should be interpreted with caution due to the small sample size.

AKT, protein kinase B; ALP, alpelisib; Alt, altered; ATM, ATM serine/threonine kinase; ATR, ATR serine/threonine kinase; AURKA, aurora kinase A; CDK4, cyclin dependent kinase 4; CDKN2A/B/C, cyclin dependent kinase inhibitor 2A/B/C; CDK4/6i, cyclin-dependent kinase
4/6 inhibitor; FUL, fulvestrant; HR, hazard ratio; mPFS, median progression-free survival; NF1, neurofibromin 1; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN, phosphatase and tensin homolog; MYC, MYC proto-oncogene bHLH transcription factor; RAD21, RAD21 cohesin complex component; RB1, RB transcriptional corepressor 1; WT, wild-type.

Summary

- Alpelisib had clinical benefit regardless of the mutation status of selected genes,
 MAPK pathway genes, PI3K pathway genes, or genes implicated in CDK4/6i resistance
- Patients with low TMB treated with alpelisib had longer mPFS than patients treated with placebo
- Improved benefit was observed in patients with altered FGFR1 and/or FGFR2, whereas limited benefit was observed in patients with altered MYC and/or RAD21
- The results in this analysis are hypothesis generating because of the small sample size
- A differential gene alteration landscape was observed in PIK3CA-altered and PIK3CA-wild-type populations; further analyses will be reported in the future

Acknowledgments

- This study was sponsored by Novartis Pharmaceuticals Corporation
- Medical writing assistance was provided by Sarah A. Hutchinson, PhD, from Healthcare Consultancy Group, LLC, and was funded by Novartis Pharmaceuticals Corporation

Space holder for QR code

